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Abstract-The relative stability of the multiple steady states of laminar free convection flows in a porous 
medium saturated with cold, pure water along a vertical, isothermal, planar surface is investigated. Two 
distinct regions of numerically computed multiple steady-state solutions for flow conditions in which the 
internal temperature range spans a density maximum (0 < R < l/2, where R is a temperature ratio 
parameter) have been reported in the literature. Stability analysis of these steady states is performed by 
linearizing the time-dependent equations about the steady-state solutions and by considering only 
amplification or decay of perturbations with time. The results obtained indicate that all but one of the 
multiple steady states at each R are unstable with respect to time. Relative merits and demerits of the 

approach used in this study over the conventional hydrodynamic stability analysis are discussed. 

1. INTRODUCTION 

FLUID motion in natural convection processes arises 
from the differences in density of the fluid which are 
caused by the variation of temperature across the 
flow field. Reversals of the resulting buoyancy force 
may occur if the internal temperature range of the 
flow field contains the temperature at which the 
density of the fluid attains a maximum value. This 
leads to complex convective effects, such as reversals 
in the flow and nonsteady flow. 

In this study, the system under consideration is 
a vertical, planar, isothermal surface adjacent to 

quiescent, cold, pure water saturating a porous 
medium. Such flows are found in the melting and 
freezing of ice surfaces, in process technology, and 
near cold rock faces against saturated sand beds. 
In the region adjoining the vertical surface, the 
temperature variations considered span the tempera- 
ture at which the maximum density occurs, see Figs.1 
and 2. (The density of pure water at atmospheric 
pressure is maximum at about 4°C.) The resulting 
multiple steady-state flows (which are numerically 
obtained Cl]) are then examined for their stability. The 
conventional method of analysis of hydrodynamic 
stability is not invoked, but a linearized stability 
analysis of the steady states, considering only amplifi- 
cation or decay with time, is made. 

The different approach adopted in this study is to 
derive the linear stability equations from a purely 
mathematical standpoint and to examine the stability 
of the steady state solutions in the same spirit, i.e. 
by following as closely as possible the classical 
analysis which studies stability of solutions of 
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FIG. 1. Qualitative sketch of water density vs temperature: 
(a) R c 0 upflow; (b) R > 1 downflow; (c) R = 0.5 downflow; 

(d) R = 0 upflow. 

dF(q, T)/& = LF(q, 7) by introducing F(q, 7) = 

f(q)exp(lr) (where L is a linear operator in q). It is 
the final transformed equations whose mathematical 
stability is studied, instead of the original equations 
of rates of change of momentum and energy. However, 
as demonstrated in the Appendix, the results obtained 
can be interpreted to be the asymptotic limit of the 
traditional hydrodynamic case when the pertur- 
bations allowed are real valued (the zero frequency 
limit) and the wave number goes to zero as well. The 
principal disadvantage of the approach used here is 
that less information is obtained about the physics of 
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NOMENCLATURE 

a complex number used as exponent Z independent variable on the unit 
in the perturbations considered in interval, equation (14). 
the Appendix, equations (A5) 

A(z) ancillary function on the unit Greek symbols 
interval, equation (27) a coefficient in the density relation, 

B(z) ancillary function on the unit equation (2) 
interval, equation (27) al thermal diffusivity, equation (6) 

C constant, equations (18) and (21) B complex number used as 

ct constant, equation (10) exponent in the ~rturbations in 
C* constant, equation (21) Appendix, equation (A5) 

CP specific heat P* complex number, equation (A7) 

D(z) ancillary function on the unit 6 small number close to zero, 
interval, equation (27) Section 3 

E(z) ancillary steady-state temperature E small value for linearizing 
gradient on the unit interval, 

: 
similarity variable, equation (9) 

equation (14) eigenvalue 

f (% T) similarity streamfunction P viscosity of the fluid 

8 acceleration due to gravity P density 

H(z) ancillary steady-state C7 porosity of the medium 
streamfunction on the unit interval, 

equation (14) &ri* z) 

dimensionless time 

nondimensionaiis~ temperature 
k thermal conductivity f&(x, y, t) streamfunction (u = a~/ay, 
I( permeability of the median v = -atj/aX). 

p(X, y, t) pressure 

4 exponent in the density relation, Subscripts 
equation (2) e effective 

R temperature ratio parameter, f of the fluid 

equation (1) m at the extremum condition 

R% local Rayleigh number, equation r reference value 

(10) of the solid 
t time s, at the wall 
T(x, Y, t) temperature co at ambient condition. 
U(x,Y,.z) Darcy velocity in the x direction 

( = a~/~Y) Other symbols 
v(x, y, t) Darcy velocity in the y direction steady-state value 

(= - 8$/8x) 
^ 

perturbations of the steady-state 
V(x, y, t) velocity vector with components u eigenvectors associated with the 

and v particular form of perturbations 
X coordinate along the vertical considered. 

surface 

Y coordinate perpendicular to the 
vertical surface 

the disturbed flow than if the traditionai approach 
were successfully implemented, and information on 
downstream, selective frequency growth of amplitude 
is lost. 

This approach is selected over the conventional 
one because of the following considerations. As dem- 
onstrated in the Appendix, the traditional approach 
of studying hydrodynamic stability leads to a singuiar- 
ity in the stability equations if a nonlinear variation of 
density with temperature (of the specific mathematical 
form indicated in Section 2) is assumed. However, the 

presence of this singula~ty is not very serious since 
it can be avoided by making additional assumptions 
(see the Appendix). But the resulting system of equa- 
tions is still quite complicated, and even after suitable 
similarity transformations contains the x (vertical) 
coordinate in the coefficients in a nontrivial way. 
Further, the system is of sixth order. Since we are 
investigating two entire families of multiple steady- 
state solutions to indicate which of them are stable, 
and not just the stability curves corresponding to a 
single steady-state solution (for example, as is done 
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FIG. 2. Coordinate system: (a) upflow (R near 0); (b) down- 
flow (R near 0.5). 

in refs. [2,3] for systems in nonporous environments), 
implementation of the classical approach would 
require a major computational effort. 

The approach adopted yields a simpler system of 
equations which leads to a determination of the 
relative stability of the various steady-state solutions, 
and significant results are obtained with a saving of 
much effort. The linear system of equations obtained 
are of third order and have a less complicated x 
dependence in the coefficients as compared to the x 
dependence in the equations that result from the 
classical formulation. Moreover, the boundary value 
problem for the stability equations in this study is 
also transformed from a problem on a semi-infinite 
interval to one of the unit interval. This saves comput- 
ational resources; and, more importantly, enables the 
computation of eigenvalues and eigenvectors which 
could not be found through computations on the 
original semi-infinite interval. 

Two families of steady-state solutions, one for R 
near and greater than 0, and the second for R near 
and less than 0.5 (where R is a temperature ratio 
parameter, see Nomenclature) are computed. For 
values of R between these two ranges no steady-state 
solutions (as reported by Gebhart et al. Cl]) have 
been found. The second family (R near 0.5) has two 
steady-state solutions at each value of R and the 
corresponding bifurcation diagram has only one nose 
(point of vertical tangency, see Figs. 3 and 4). For this 
family only one eigenvalue 1 was found. It changes 
sign at the nose, indicating that only one of the two 
steady-state solutions at each R may be stable with 
respect to time while the other certainty is unstable. 
For the first family of solutions (near R = 0, see Figs. 

3%5), the bifurcation diagram for the steady states has 
many noses, three of which have been numerically 
obtained, and many more are conjectured [1,4,5]. 
Many eigenvalues have been computed, all of which 
are negative for the range of R over which a single 
solution exists, and for the continuation of this range 
to the first nose of the bifurcation diagram. Also the 
ith eigenvalue (i = 1,2) changes sign from negative to 

FIG. 3. Bifurcation diagram of the steady state in terms of 
&O,. 

R 

FIG. 4. Bifurcation diagram of the steady state in terms of 
J(cQ,. 

positive at the ith nose of the bifurcation diagram 
and then remains positive. The third and the further 
eigenvalues could not be numerically continued past 
the first nose (because of difficulties described in 
Section 3). Thus the flows corresponding to solutions 
in the single-solution range of R continued to the first 
nose may be stable, and the flows corresponding to 
other steady-state solutions in the multiple-solution 
range of R are only conditionally stable, becoming 
more unstable as we continue down the bifurcation 
curve. 

The results of the stability analysis establish that 

all heat transfer coefficients but one are unstable at 
each R, and thus preclude any possibility of harnessing 
in technology the multiple heat rates that are numeri- 
cally predicted. For analogous results, see refs. [6,7]. 

Similar bifurcation has been observed for the same 

flow configuration in a nonporous environment [8]. 
(See refs. [6-83 for a comprehensive list of related 
experimental and theoretical studies.) A conventional 
stability analysis for this case has been performed by 
Hwang [7], and neutral stability curves have been 
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obtained. By implementing the present analysis to the 
same problem [6], results that are qualitatively similar 
to those in ref. [7] are observed. Thus the present 
method (which is simpler and requires less comput- 

ational effort than the traditional method, and yields 
qualitatively similar conclusions) is relatively superior 
and can be introduced as a general stability theory 
in heat and mass transfer for problems that exhibit 
bifurcation in the steady state, and where the bifur- 
cation curve contains at least one point of vertical 
tangency. Examples of such can be found in refs. [l, 
4-91. 

2. MATHEMATICAL FORMULATION 

The vertical, isothermal surface is assumed at 
constant temperature T, and is adjacent to quiescent 
cold water saturating a porous medium at an ambient 
temperature of T, . This temperature range is assumed 
to be close to temperature T, (=4”C) at which the 
density extremum occurs, see Fig. 1. The parameter 
that characterizes the temperatures in the system, and 
their relative positions and magnitudes is R which is 

defined as [l, lo] 

R = (K, - GMT, - 7-m>), (1) 

A buoyancy force reversal arises for 0 < R < l/2 [1] 
which lies in the inner portion of the thermal region 
(close to surface) for R somewhat less than l/2, and 
in the outer portion for R close to 0. From Fig. 2 it 
may be observed that the flow is upward for R < 0 

and downward for R > l/2. 
When fluid flows slowly through permeable 

material, motion is resisted according to Darcy’s law 
[11-141, which states that the hydraulic gradient is 
proportional to the fluid velocity and to its viscosity, 
and is inversely proportional to the permeability. In 
the equations of motion for creeping flow, the Darcy 
resistance term replaces the Navier-Stokes viscosity 
term. Using the Boussinesq approximation and the 
density relationship for cold water [ 151: 

pr = PmrCl - aI T- 7’Jl (2) 

the equations governing the velocity and temperature 
fields are [12-141: 

v-v=0 (3a) 

?g + $V = -VP + pmf[l - alT- Tm14]g (3b) 

WJ,,~ + W,)r,V * VT = k,V2T (3c) 

where [13] 

(PC,), = (1 - %G), + 4PfqJf, 

k, = (1 - o)k, + ok,. (4) 

It is assumed that in equations (3), V and T are the 
only variables and the other coefficients are constant. 

Hence a subscript r has been added to denote constant 
reference quantities. 

The hypotheses that were made to arrive at above 
equations are [lo]: the saturating liquid and the 
porous medium are in local thermodynamic equilib- 
rium; the physical properties of the fluid and the 
medium are isotropic and homogeneous; and the 
empirical Darcy’s law is valid. 

The appropriate boundary conditions for the two- 
dimensional system under study are 

V(x,O, t) = V(x, co, t) = T(x, 0, t) - To 

= T(x, al, t) - T, 

= 0. (5) 

The equations governing steady-state, natural con- 

vection can be extracted from equations (3) by deleting 
the time derivative. Defining 

(6) 

and following the analysis presented in ref. [lo], the 
pressure terms in equation (3b) are eliminated through 
cross differentiation. The boundary-layer approxi- 
mations are then applied, which result in neglecting 
the change in 0 with respect to x, as compared to ri 

with respect to y. Conduction in the direction of the 
flow is also neglected. Integrating the resulting velocity 
equation and applying the boundary condition at rx 
[equation (5)] results in [lo] 

4x, y) = + :g ap,,CI T - 7X - I T6, - T,l”l (74 

U’b) 

where 0 < y < co, 0 < x < co, and 

ti(x,O) = G(x,O) = U(x, co) = $x, co) = 0 (ga) 

T(x,O) - To = T(x, 00) - T, = 0. (gb) 

The plus sign in equation (7a) corresponds to the 
coordinate system in Fig. 2a and the minus sign to 
that in Fig. 2b. 

A similarity variable is defined as [IO] 

rj = &(RaJ1!’ (9) 

where Ra, is the local Rayleigh number and is defined 
as 

Ra, = cfx, 

cf = 2KwmfglT, - W/(/*,4- (10) 

A normalised, steady-state temperature &I) and a 
similarity, steady-state streamfunctiony(q) are defined 
as [l, lo] 

d;c?) = C%Y) - T,lMG - Tc.A 

.h) = $6, yYCalUW”21. (11) 

From equations (9)-(11), and the definition of the 
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streamfunction $ (see Nomenclature), the steady-state 
equations (7) become (for 0 < q < co) 

(12) 

The plus/minus signs correspond to Figs. 2a/2b, 
respectively. The corresponding boundary conditions 
are 

T(O) = 6(O) - 1 = &co) = 0. (13) 

It has been shown [l] that $(q) is strictly decreasing 
for ‘1 3 0 and can be taken as an independent variable. 
Thus letting [l] 

fw = 3m (14) 

equations (12) become (for 0 < z < 1) 

Wz) _ (lz - ~14 - 1~1”) 
7=+ 

Jw ’ 

(15) 

The minus/plus sign in equation (15) corresponds to 
the coordinate system in Figs. 2a/2b, respectively. The 
corresponding boundary conditions are 

H(1) = E(0) = 0. (16) 

The change in variables thus converts the auton- 
omous, third-order, boundary-value problem on the 
semi-infinite interval, given by equations (12) and 
(13), to the nonautonomous, second-order, two-point 
boundary-value problem on the unit interval, as given 
by equations (15) and (16). 

Following the analysis used to obtain equations 
(7), the time-dependent equations (3b, c) are simplified 
to obtain 

= zk +qlT- T,lq - IT, - T,l’l (174 

(PC,),, al- 2 - + .g+ ,aT = $?z 
w,h, at ay a9 

(17b) 

The corresponding boundary conditions are expres- 
sed by equation (5). 

A scaled time is then defined as 

z = ct (18) 

where c is a constant to be determined for convenience. 
Using the similarity variable r] defined by equation 
(9), a normalized temperature and similarity stream- 
function [based on equation (1 l)] are introduced as 

T(x, Y, t) - Tm 
4(%~)= T _T > 

0 m 

(19) 

Using equations (9), (lo), (18), (19), the following is 
obtained from equations (17) (for 0 < q < co) 

(20) 

As before, the plus/minus signs correspond to Figs. 
2a/2b, respectively. Also, c (chosen to non- 
dimensionalize 7) and c* are 

c=3!!L 
Of, 

c* _ (PC*)er 4 L!!!L. 
(PC,),, (ale) WPd 

(21) 

The boundary conditions are 

f(O,Z) = 4(0,7) - 1 = #o&z) = 0. (22) 

Stability analysis 
The nonlinear T-dependent equations (20) are 

linearized about the steady-state solutions 3(q) and 
4(s), whose stability is under consideration. This is 
achieved by considering solutions of the form 

f(rlY 7) = Rs, + &a 4 + W2h (234 

4h 4 = iv?) + &L 4 + W2) Wb) 

where 3(t~, 7) and &, T) are perturbations off and 4, 
respectively, and E is small and positive. Substituting 
equations (23) into equations (20), and using equations 
(12) to ‘cancel out’ the base flow (steady-state) terms, 
a system of partial differential equations is obtained 
(after dividing through by E and taking limits as E 
tends to zero) in which the time derivative a/& 

appears in the equations governing f (as it should), 
but in the equation for $ it appears as part of a2/&$t. 
Thus the system is not of the usual form, aV/& = L, V 

(L, is a linear operator), for a linear stability analysis 
to be rigorously carried out. However, the following 
analysis proceeds as if the system were susceptible to 
the usual linear stability analysis. 

The perturbations f and $ are assumed to be of 
the form 

3h 4 = e”$lrl)~ &L 7) = e%r). (24) 

Substituting equations (23) and (24) into equations 
(20), cancelling out the steady state [equations (12)], 
and taking the limit as E goes to zero yields (for 0 

<.?<a) 

[A + 11s = fqsign($-- R)I+ Rlq-‘& (25a) 

c*x;lm-[3g+3g=$. C-4 



3.56 S. KUMAR and N. D. KAZARINOFF 

Again, the plus/minus signs correspond to Figs. 2a/2b, 
respectively. The corresponding boundary conditions 
are 

J(0) = b(O) = &co) = 0. (26) 

to their respective conditions at co. It is observed that 
if rl, is chosen to be much greater than the smallest 
such value, the eigenvectors exhibit some numerical 
instability manifested by slow decay and random 
small oscillations of their components at large rl. 

Equations (25) and (26) form an eigenvalue problem For the corresponding problem on the unit interval, 

if we assign particular numerical value to x. given by equations (28) and (29), the eigenvalue 

A transformation of equations (25) and (26) to a problem is solved by appending equation (30) (with 

unit interval is achieved by using z [defined by the derivative taken with respect to z), and considering 

equation (14)] as an independent variable and by boundary conditions [from equations (31) and (27)] 

defining of the form 

A(O) = 1, for R near and r 0 (32a) 

D(1) = - 1, for R near and < 0.5. (32b) 

In the range of R near to and less than 0.5, the 
family of steady-state solutions and the corresponding 
eigenvalues and eigenvectors are computed for the 
interval [O,rl,]. The values of rlrn required were not 
large (no greater than 52). However, for R near to 
and greater than 0 very large values of rl, are required 
(typically 100 and greater) for the components of the 
solution to smoothly and exponentially reach their 
respective values at co, especially for small values of 
f(a). Thus equations (28) and (29) are used, which 
are equations for the unit interval. The problem of 
selecting a suitable q, is then avoided and so are the 
errors involved in integrating over large intervals. 
Also by solving the problem on a unit interval enables 
the computation of eigenvalues and corresponding 
eigenvectors which would not have been found 
through computations on the original system. 

D(z) = - y. 

Using equations (14) and (27), equations (25) yield 
(for 0 < 2 < 1) 

(28a) d-44 _ T q s’gn tz - WI z - RI4 - 1Bo 
(.J + W(z) 

d&z) D(z) -=- 
dz E(z) 

dB(z) 
- = c**@ + H(z)$$ + A(z). 

dz 
(28c) 

WW 

The boundary conditions are obtained from equations 
(27) and (14) as 

A(l) = B(0) = B(1) = 0. (29) 

The minus/plus signs in equation (28a) correspond to 
the coordinate systems in Figs. 2a/2b, respectively. 

The change in variable enables the eigenvalue 
problem on the semi-infinite interval [equations(25)] 
to be converted to that on a unit interval. Of course, 
a specific numerical value must be assigned to x for 
the problem to be well-posed. 

3. NUMERICAL RESULTS AND DISCUSSION 

Equations (25) and (26) are solved by choosing Iz 
as an additional unknown and by appending the 
trivial differential equation 

da - 0 

ig-. 

An additional normalizing boundary condition is 

specified as 

3(m) = 1, for R near and 3 0 (31a) 

d$(O) - 1 
d? ’ 

for R near and < 0.5. (3lb) 

The eigenvalue problem thus obtained is solved on a 
finite interval [0, q,] with the boundary condition at 
co imposed at qrn. The same fixed value of q, was 
not used at every R, but instead qrn was so chosen 
that both the steady-state solutions as well as the 
eigenvectors converged smoothly and exponentially 

Even so, it was observed that integrating near zero 
was quite difficult and equations (28) and (29) had to 
be solved on an interval [l,ZJ, where 6 --* 0 and the 
boundary conditions at 6 are obtained from equations 
(28) and (29), and (32) by Taylor series expansion 
about 0. These boundary conditions are expressed as 

9-l 
A(S) = 1 - qR 

c*xa@. + tp 

B(S) = -%a 
for R near and greater than 0. An integration from 0 
to 1 (instead of from 1 to 0), by using the Taylor series 
expansion about 0 to obtain good guesses for the 
solution components near 0, could not be 
implemented because the coefficients in the Taylor 
series contain the value of 1 [see equation (33)] which 
is unknown (and usually very small), thus making the 
coefficients of the Taylor expansion too sensitive to 
the guess of I to be used. 

Two different computer codes were used to obtain 
the numerical results: BOUNDS and COLSYS. 
BOUNDS is a two-point, boundary-value-problem 
solving routine that uses multiple shooting techniques 
[l&18], while COLSYS uses the method of collo- 
cation with B-splines [19]. The steady-state solution 
was first obtained by solving equations (12) and 
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(13) with BOUNDS. Since the solution provided by 
BOUNDS consists only of component values at a set 
of pre-determined mesh points, the solution was given 
to COLSYS to generate splines corresponding to 
components of the steady-state solution vector. These 
were then used by BOUNDS while solving the 
stability equations [equations (25) and (26)]. A similar 
approach was used while solving on the unit interval 
[equations (15) and (16), and (28) and (29), respec- 
tively]. The computations were performed on a CDC 
Cyber 174/730 computer system, and both BOUNDS 
and COLSYS were compiled by the FORTRAN 5 
(FORTRAN 77) compiler under OPT = 2. Approxi- 
mate run time for obtaining the steady-state solutions 
ranged from a few CPU seconds to about 30s (for 
large q,), and for solving the linear stability equations 
for the CPU time was about 50s for the range of R 

near 0, and about 150s for the range of R near 0.5. 
The computations were carried out to an error less 
than 10e6. 

Before presenting the results we clarify what is 
meant by stable. By the statement that a steady state 
is stable we mean that small perturbations of the form 
specified by equation (24) decay exponentially to 0 as 
t + + co for each fixed (x, y). Similarly, unstable means 
that the absolute value of the perturbations grows 
exponentially to co as t + + 00 for almost all fixed 

(x9 Y). 
All computations were carried out for q = 1.894816, 

which corresponds to that for pure water at atmosph- 
eric pressure, see [15]. For the first family of solutions 
(R near 0, see Figs. 3-5 for bifurcation curves of the 
steady-state solution) nine eigenvalues and corre- 
sponding eigenvectors were found, see Tables 1 and 
2 and Figs. 6 and 7. All the eigenvalues are negative 
in the single solution range continued to the first nose 
(point of vertical tangency) N, of the bifurcation 
diagram. The first eigenvalue changes sign from 
negative to positive at the first nose and remains 
positive thereafter. Similarly the second eigenvalue 
changes algebraic sign and becomes positive at the 
second nose N,. 

The third and further eigenvalues could not be 
computed past the first nose due to difficulties that 
were encountered. While numerically continuing the 
third and further eigenvalues and the corresponding 
eigenvectors past the first nose N,, the computations 
would converge to the first and second eigenvalues 
and their corresponding eigenvectors (especially the 
second), rather than yielding the corresponding third 
and further eigenvalues and eigenvectors. All the 
eigenvalues Ai are small negative numbers before and 
after the first nose N, (except 1, which becomes 
positive after the nose, but is small in magnitude); see 
Tables 1 and 2, and Figs. 6 and 7. The eigenvectors 
corresponding to different li become almost identical 
as the first nose N, is approached from the single- 
solution range of R on the bifurcation diagram. We 
conjecture that just before the first nose N, the values 

0.3541 I 1 I 

01920 0.1925 O.R30 01935 
R 

FIG. 5. A blown-up version of the bifurcation diagram in 
Fig. 3. 

0 
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h 
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FIG. 6. The multiple eigenvalues Ii for ihe family of solutions 
near R = 0. 

I I 

-2- 

-6- 

-8- 

01920 OJ925 0.1930 0.1 
R 

FIG. 7. A blown-up version of Fig. 6, showing the first two 
eigenvalues past the first and second noses. 
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Table 1. The first two eigenvalues for the family of solutions near 
R-O _~__._ 

R /7 ,JJ 1 jL 4 ‘I, -_- 
0.000000 0.794702 -~0.17337 x 10~’ -0.21861 x 10-l 28 
0.050000 0.696211 ~~0.13123 x IO- ’ -0.16107 x 10-l 34 
0.100000 0.579459 0.93674 x 10~~’ PO.12330 x IO-’ 34af 
0.125000 0.51015x -0.74365 x IO z --0.15318 x 10-I 34b 
0.155000 0.408813 ---(I.46009 x lo-* PO.61153 x lo-’ 46c 
0.180000 0.287461 - 0.21409 x 10~2 -0.27418 x lo-’ 70d 
0.189296 0.210000 ~~0.10152 x IO-* --0.15234 x lo-’ 82 
0.192446 0.160000 -0.43028 x IO ’ -0.98621 x 10m3 88e 
0.192813 0.150000 0.34130 x IO-” PO.85313 x 1O-A 94 
0.192655 0.050000 0.2357’) x 10-3 -0.10795 x 10-3 t 
0.192454 0.040000 0.24629 x IW .’ PO.67733 x IO-+’ t f 
0.192163 0.015000 0.1405X x IO ’ -0.27318 x 10m5 t 
0.1921593 0.011750 0.23859 x 10~ A -0.16631 x 10mh t 
0.192160 O.OlOOOO 0.23762 x 10-J 0.97532 x IO_ 6 t 
0.192 I64 0.007SOO 0.23640 x 10 ’ 0.22748 x 1O-5 t g 

t Computed on the unit interval. 
$This point LI<. i.(‘xa)] is identified on the plots by this alphabet. 
(All computations done at C,*Y = 10.) 

Table 2. The single eigenvalue for the family of 
solutions near R = 0.5 

R -670) a 'l I 

0.485000 0.308756 PO.23679 x 10-l 28 ht 
0.480000 0.301769 -0.23340 x IO ’ 28i 
0.475000 0.294583 -0.22994 x 10 I 28 i 
0.465000 0.279528 PO.22259 x IO ’ 28k 
0.425000 0.204477 -0.154X2 x 10~ ’ 341 
0.407125 0.150000 -0.74774 x IO 2 34m 
0.400825 0.100000 PO.19839 x IO ’ 40 
0.400820 0.098000 0.63129 x 10mJ 40 
0.404360 0.065000 0.43707 x IO 2 40 
0.405613 0.060000 0.49576 x IO ’ 40 
0.407107 0.055000 0.552’1 x IO_” 40 11 
0.420000 0.0292305 0.78838 x 10 ’ 40 
0.440000 0.01075 I6 0.82761 x IO ’ 40 
0.460000 0.0025985 0.68274 x IO-” 46 
0.465000 0.0015545 0.62415 x IO ’ 52 0 
0.475000 0.0003492 0.48036 x IO--’ 52p 
0.480000 0.0001018 0.39475 x IO_ .! 5’ 
0.485000 0.0000132 0.30064 x 10 ’ 52 

tThis point [R, tji'(O,l is identified on the graph 
by this alphabet. (All computations done at v*.x - IO.) 

of &, A,, . are closer to the values of i, and i, just 

after this nose. Thus our numerical computations 
jump from i,, i,, . to the values of i., and i., as 
one passes beyond N,. To avoid this, guesses based 
on the values before the nose N, and the expected 
values after N, were used in an endeavour to compute 
A,, 1, . after the nose. But this did not succeed since 
convergence could not be reached in a reasonable 
amount of computer run time. 

By observing that all the eigenvalues are negative 
in the single-solution range continued to the first nose 
N,, we conclude that these steady-state solutions may 
be stable up to N,. The other multiple solutions, 
existing past the first nose N, on the bifurcation 
diagram, have some eigenvalues associated with them 
that are positive and are thus unstable steady-state 
solutions. In terms of heat transfer coenicient at the 
wall [heat transfer at wall is proportional to -(i;(O)]. 
the result implies that of all multiple solutions at any 

K in the first family of solutions (near R = 0), only 
the one with the highest heat transfer coefficient at 
the wall may be stable, while others with lower 
heat transfer coefficients are unstable with time. The 
existence of multiple eigenvalues also lends support 
to the conjecture that there exist infinitely many noses 
in the bifurcation diagram and that corresponding to 
the ith nose Ni is an eigenvalue Li that changes sign 
(exactly once) from negative to positive at Ni as T(a) 
decreases. 

For the second family of solutions (R near 0.5, see 
Figs. 3 and 4 for the bifurcation diagram) only one 
eigcnvalue i was found (Table3). It changes sign at 
the nose N of the bifurcation curve indicating that 
only one of the steady-state solutions at each R may 
be stable, the one with the higher heat transfer 
coefficient at the wall. We conjecture (from Fig. 8) 
that the single eigenvalue 1 for this second family of 
solutions decreases to 0 as -p(O) decreases to 0 and 
R approaches 0.5 as well on the bifurcation curve. 

The above eigenvalues were found to be reasonably 
insensitive to changes in c*x (see Table 4). We remark 
that it is no accident that the eigenvalues, considered 
as functions of [,f( co), R] or C-$‘(O), R], change their 
signs independently of the value of x (x > 0). This is 
so because for c*x > 0 the condition c*xl = 0 implies, 
for example, that L[f(co), R] = 0, and vice versa. 

Thus our results establish that only one of the 
multiple steady states previously found may be stable 
with time, and one may expect to observe the corres- 
ponding flows experimentally. All the rest of the 
steady states are not stable with time, and thus one 
may not expect to observe any of the corresponding 
flows experimentally. 

REFERENCES 

I. B. Gebhart. B. Hassard, S. P. Hastings and N. D. 
Kazarinoff, Multiple steady-state solutions for buoyancy 
induced transport in porous media saturated with cold 



Stability of a free convection density~xtremum flow in a porous medium 359 

I I 
” . - - - r-c+* 

b’ob’obbbbb ______-.-..-. 
xxxxxxxxx 

we--- NNNN 

? 
2 

0 

I I II 
bbbbbobob 
-.-.----c_ _ E 

ar: *x xxxxxxxxx ~ 

6 -“-““:: c I I lo’ob’o’o’ooo ‘t: ~_______ 

2 xxxxxxxx 

I I 
--c-NNNN 

ioioioio’abbb 
_____3__ 

040 044 0.48 

R 

Fu;. 8. The single eigenvalue i for the family of solutions 
near R = OS. 

pure or saline water, Numer. Heat Trans@r 6, 337-352 
( 1983). 

2. C. P. Knowles and B. Gebhart, The stability of the 
laminar natural convection boundary layer, J. F&d 
Me&. 34, 657--686 (1968). 

3. C. A. Heiber and B. Gebhart, Stability of vertical natural 
convection boundary layers: some numerical solutions, 
J. Fluid M&t. 48, 625-646 (1971). 

4. S. P. Hastings and N. D. KazarinoIT, On the bifurcation 
diagram for a problem in buoyancy induced flow, 
Contemp. Math. 17, 395-400 (1983). 

5. S. P. Hastings and N. D. Kazarinoff, Multiple solutions 
for a problem in buoyancy induced flow, Archs ration. 
Mech. Analysis 87. 229-249 (1985). 

6. I. El-Henawy. B. Hassard and N. D. Kazarinoff, A 
stability analysis of nontime-periodic perturbations of 
buoyancy induced Rows in pure water near 4°C. .I. Fluid 
Me&. 163, t-20 (1986). 

7. Y.-K. Hwang, The stability of some multiple steady 
states and the effect of motion pressure in vertical natural 
convection Rows in cold water. Ph.D. dissertation, 
SUNY, Buffalo (1984). 

8. I. El-Henawy, B. Hassard, N. D. Kazarinoff, B. Gebhart 
and J. C. Mollendorf, Numerically computed multiple 
steady states of vertical buoyancy-induced flows in cold 
pure water, .I. Fluid Mech. 122, 235-250 (1982). 

9. J. F. Brady. Flow development in a porous channel and 
tube, Phys. Fluids 27, 1061-1067 (1984). 

10. J. M. Ramilson and B. Gebhart, Buoyancy induced 
transport in porous media saturated with pure or saline 
water at low temperatures, Int. J. Heat Mass Transfer 
23. 1521-1530 (1980). 

11. E. R. Lapwood, Convection of a fluid in a porous 
medium. Proc. Camh. Phil. Sot. 44, 508-521 (1948). 

t2. R. A. Wooding, Steady state free thermal convection of 
a liquid in a saturated permeable medium, 1. Fluid Me&. 
2, 273-285 (1957). 

13. J. L. Beck, Convection in a box of porous material 
saturated with fluid. Phys. FIui& 15,*1377-1383 (1972). 

14. S. A. Bories and M. A. Combarnous, Natural convection 
in a sloping layer, J. Fluid Mech. 57, 63-67 (1973). 

15. B. Gebhart and J. C. Mollendorf, A new density relation 
for pure and saline water, Deep Sea Res. 24, 8133848 
(1977). 

16. R. Burlisch and J. Stoer, Numerical treatment ofordinary 
differential equations by extrapolation methods, Numer- 
ische Math. 8, 1-13 (1966). 

17. P. Deuflhard, Recent advances in multiple shooting 
techniques. In Computational Techniques for O.D.E. 



360 S.Ku~n~ami N.D. KAZARINOFF 

Table 4. The variation of the eigenvalue with c*x near R = 0.5 

c*x 

R - a?ro\ 50.0 120.0 200.0 n- 

0.480000 0.301769 -0.23509 x 10-l -0.14004 x 10-l -0.11427 x 10-i 28 
0.400825 O.lOOOOO -0.40167 x lo+ -0.16766 x lo-* -0.10065 x iO’+ 40 

0.404360 0.065000 0.88566 x 1O-3 0.36974 x 1O-3 0.22196 x 1O-3 40 
0.42oooO 0.0292305 0.15969 x 10-a 0.66661 x 10-J 0.40018 x 10-S 40 

0.465CtOO 0.0015545 0.12608 x 10-a 0.52610 x 1O-3 0.31579 x 10-s 52 

(Edited by Caldwell and Sawyer), pp. 217-282. Academic 
Press, New York (1980). 

18. P. cushy and G. Bader, Multiple shooting techniques 
revisited, Preprint No. 163, Inst. fiir Angewandte Math., 
U. Heidelberg (1982). 

19. U. Ascher, .I. Christiansen and R. D. Russell, COLSYS- 
A collection code for boundary problems. In Notes on 
Computer Science (Edited by Goos and Hartmanis), No. 
76, Codes for Boundary-Value Problems in Ordinary 
Di~re~riuZ Equations, pp. 164-185. Springer-Verlag, 
Berlin (1978). 

APPENDIX: TRADITIONAL FORMULATION FOR 
HYDRODYNAMIC STABILITY 

The conventional method of studying hydrodynamic stab- 
ility of the system under consideration is outlined in this 
Appendix. It is shown that such a foliation (based on the 
analysis presented in refs. [Z, 31) leads to a singutar coefficient 
in the governing equations. It is also demonstrated that the 
singularity can be eliminated by assuming the x derivatives 
of the time-dependent velocities to be small as compared to 
the Y derivatives; and that the stability equations used in 
the previous sections may be extracted from the resulting 
equations. 

First, the pressure terms are eliminated from the time 
dependent equations (3) by cross differentiation. After ‘lum- 
ping’ the constants together with the help of equations (10) 
and (21), the resulting equations are linearized about the 
steady-state solutions ri(x, y), qx, y) and qi(x, y) by considering 
solutions of the form 

u(x, Y, r) = tz(x, Y) + Ea(x, Y, r) + 0(&a) (Ala) 

r&Y, r) = t%, Y) + EO(& Y, r) f O(sZ) (Alb) 

7% K r) = T(x> Y) + @x, Y, r) + o(s’) (Ale) 

where E is small and positive. Neglecting the change in ti, i? 
and T with respect to x, as compared to those with respect 
to y, dividing through by E and taking limits as E + 0, and 
cancelling out the steady-state terms with the help of 
equations (7), the resulting equations Yield 

= cz,[g+ $1. (A2b) 

The plus/minus sign corresponds the coordinate system in 
Figs. 2a/2b, respectively. 

The final form of the equations after substituting the 
mathematical forms of ~~urbations a, G and ?’ is not 
presented here since the object is to demonstrate that a 
singularity is introduced in the coefficients of the linear 
stability equation and that it can be removed. The singularity 
exists on the RHS of equation (A2a) since 1 < q 2 2, i.e. 

IT- 7Jq-’ (obtained after simplifying a/ay) is singular at 
T= T,. 

This singular behaviour may be eliminated only if, in 
addition to neglecting the change in steady-state physical 
quantities with respect to x as compared to changes with 
respect to y, we also assume that the change in the time- 
dependent velocity perturbations D and 0 with respect to x 
can be neglected as compared to those with respect to Y (as 
done in Section 2). Then equation (A2a) may be integrated 
to yield [after using the boundary condition at Y = co, 
equation (5)] 

u,c: sign+- Td - 
Ii‘-- Tmf4-‘? (A3) 

We define (see discussions in refs. [Z, 31) 

$(x, Y, r) = t&(x, Y) + s&x, Y, r) + O(e2) (A4) 

&x, y, t) = a,(Ra~)“‘~(~~(~-~‘) (A54 

?‘(x, y, t) = (To - T&&yl)e’@-@‘) Wb) 

where 9 is the similarity variable defined by equation (9). 
Here Re(a) is the wave number in the x direction (=2n 
divided by wavelength), and Re@) is the angular frequency 
(=2n multiplied by frequency). (Note that a and fl are 
complex numbers independent of x.) If Im(x) < 0 the wave 
will amplify with increasing x, while if Im(/?) > 0 the wave 
will amplify with time. For the case Im(a) = Im(B) = 0, the 
wave will be neutrally stable and will neither amplify nor 
decay. 

From equations (ll), (A4), (A5) and using the derivatives 
of the perturbation stream function $ to represent 0 and 0, 
equations (A3) and (A2b) are transfo~ed to ( for 0 < ~6 co) 

_ig,&d+4& 
drl drl 

= ztqsignCd&) - RI I$h) - W-‘&d (A64 

where equation (21) defines c* and 

/3* = /I/c. 

WW 

(A7) 

The boundary conditions are given by equations (26). 
Equations (A6) and (26) form the stability-eig~value prob- 
lem. 

We make the following remarks. 
1. If the change in p with respect to x is neglected when 

compared to the changes with respect to y (the large Ra, 
case), the RHS of equation (A6a) becomes 
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dz&tlf 
7’ 648) 

2. If (I = 0 and p = iIm@) (i.e. -i/l* = A, d real) then the 

system of equations (A6b) and (A8) reduces to the system 

(25) and (26) studied in Section 2. 
3. The system (A6) is equivalent to a sixth-order system of 

differential equations with real-valued dependent vari- 
ables. The system of linear stability equations studied in 
Section 2 is order three, which results in a significant 

simplification in the numerical analysis. Further, the x 

dependence of the coefficients in equations (A6) is more 
complicated than the x dependence in the system (25) and 
(26) in Section 2. 

4. The singularity which occurs in deriving the classical 
linear stability equations can be avoided by not eliminat- 
ing the pressure terms [6]. This approach was not adopted 
because it introduces additional pressure variables and 
adds to the complexity of the mathematical system of 
equations, reducing the efficiency of computations. 

STABILITE DE LA CONVECTION NATUR~LLE AVEC ~XTREMUM DE DENSITE 
DANS UN MILIEU POREUX 

R&sum&On &die la stabilid relative d’ttats multiples de convection libre laminaire dans un milieu 
poreux sature avec l’eau pure froide, le long dune surface plane, verticale et isotherme. On trouve dans la 
bibliographie deux regions distinctes de solutions numbriques d’etats d’equilibre multiples pour des con- 
ditions d’icoulements dans lesquels le domaine de temperature couvre un maximum de densite 
(0 < R < l/2, oi R est un parametre de rapport de temperature). L’analyse de stabilitt de ces itats 
d’iquilibre est conduite en linearisant les equations dependant du temps autour des solutions d’itat 

permanent et en considerant seulement l’amplification ou l’amortissement des perturbations dans le temps. 

Les rbultats obtenus montrent que tous les etats multiples d’equilibre, sauf un, a chaque R sont instables 
vis-a-vis du temps. On discute l’approche utilisee dans cette etude par rapport a I’analyse de stabiliti 

hydrodynamique conventionnelle. 

STABILIT~T EINER FREIEN KONVEKTIONSSTR~MUNG IN DER UMGEBUNG 
EINES DICHTE-EXTREMUMS IN EINEM POROSEN MEDIUM 

Zusammenfassung-Es wurde die relative Stabilitit der verschiedenen stationaren ZustInde von laminaren 
freien Konvektionsstromungen entlang einer vertikalen isothermen und ebenen 0berfl;iche in einem 
poriisen mit kaltem, reinem Wasser geslttigten Medium untersucht. Von zwei unterschiedlichen Bereichen 
numerisch berechneter Lijsungen mit verschiedenen stationaren Zustiinden fiir die Striimungsbedingungen, 
bei welchen der Temperaturbereich ein Dichte-Extremum (0 < R < l/2 mit R als Temperaturverhlltnis) 
beinhaltet, wird in der Literatur berichtet. Die Stabilitfit dieser stationlren Zustande wurde durch Li- 
nearisierung der zeitabhlngigen Gleichungen urn die station&en Liisungen und die alleinige Betrachtung 
von Verstirkung oder Abschwachung der Stiirungen iiber die Zeit untersucht. Die so ermittelten Ergeb- 
nisse zeigen, da13 alle (bis auf einen) verschiedenen stationlren ZustHnde bei jedem R im Hinblick auf 
die Zeit instabil sind. Jeweilige Vorziige und Mange! des Ngherungsverfahrens in dieser Untersuchung 

gegeniiber der konventionellen hydrodynamischen Stabilit~tsanalyse wurden eriirtert. 

YCTO~~~B~b CBO~O~HOKOHBEKT~BHOrO TEqEHWi B ~OPH~O~ CPEAE I’lPki 
HAJIMYHH 3KCTPEMYMA WIOTHOCTI? 

.kIUOTaIWI--&kCJIeiIyeTCK OTHOCATeJIbHaa yCTOii’IIiBOCTb MHOXeCTBa CTauUOHapHbIX COCTOKHHti JIaMIi- 
HapHblX CB060AHOKOHaeKTHBHbIX nOTOKOB B nOpHCTOM MaTepIWIe, HaCbImeHHOM XOJIOnHO% ‘IIiCTOti 

BOLIOfi, BItOJIb BepTIIKaJIbHOg, Ii3OTepMIWCKOfi IIJIOCKOii IIOaepXHOCTIi. B Ony6JInKOBaHHbIX pa6o’rax 
OTMe’IaJIOCb HanWIne JI,ByX OT’IeTJIBBbIX o6nacreii B WiCJteHHbIX CTLUUiOHaPHbIX &WlIeHHSIX ,&JUl TaICWX 
ycnoenii TeqeHm, npe KoTopbIx BHYT~~HHH~~ nnana30H TeiunepaTyp BKnI04aeT MaKcaMyM nnomocm 
(0 < R < l/2, me R-napaMerp, y’InTbIBaIOII&I 0THomeHne TeMIIepaTyp), npoBeneH ana.nn3 yCTOii’IH- 
B~TII cTaueoeapnbIx COCTORHH~ naHeapa3aqwefi HecTanHoHapHbIx ycnoewfi oTHocnTenbH0 craqaosap- 

HblX PLYIIeHHk It paCCMaTpHBaa TOJIbKO yCE+JIeHlle HJIH ocnaljaewee BO3MyWHHii BO B$EMt??IH. 
nOJIy’feHHb!e pe3ynbTaTbI IIOKa3bIBaIOT, ‘IT0 38 IICKJIIO’IeHWeM OAHOrO BCe CTaIIIIOHapHbIe COCTOIIHWR 
WIff KaWiOrO 3Ha’ifSitiil R IIB.WlK%TCII HeYCTOi-FIWBbIMH BO BpiFMeEiH. &SCMOT~Hbi II~UMyUWCTBa H 
HWOCTaTKB SfCllOJlb3yeMOrO MeTOW II0 CpaBHeHWO C 06bI’iHbIM iiliKJIU30M r~ApOnUHaMnq~K0~ )%TOii- 

YBBOCTU. 


