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Abstract—The relative stability of the multiple steady states of laminar free convection flows in a porous
medium saturated with cold, pure water along a vertical, isothermal, planar surface is investigated. Two
distinct regions of numerically computed multiple steady-state solutions for flow conditions in which the
internal temperature range spans a density maximum (0 < R < 1/2, where R is a temperature ratio
parameter) have been reported in the literature. Stability analysis of these steady states is performed by
linearizing the time-dependent equations about the steady-state solutions and by considering only
amplification or decay of perturbations with time. The results obtained indicate that all but one of the
multiple steady states at each R are unstable with respect to time. Relative merits and demerits of the
approach used in this study over the conventional hydrodynamic stability analysis are discussed.

1. INTRODUCTION

FLUID motion in natural convection processes arises
from the differences in density of the fluid which are
caused by the variation of temperature across the
flow field. Reversals of the resulting buoyancy force
may occur if the internal temperature range of the
flow field contains the temperature at which the
density of the fluid attains a maximum value. This
leads to complex convective effects, such as reversals
in the flow and nonsteady flow.

In this study, the system under consideration is
a vertical, planar, isothermal surface adjacent to
quiescent, cold, pure water saturating a porous
medium. Such flows are found in the melting and
freezing of ice surfaces, in process technology, and
near cold rock faces against saturated sand beds.
In the region adjoining the vertical surface, the
temperature variations considered span the tempera-
ture at which the maximum density occurs, see Figs.1
and 2. (The density of pure water at atmospheric
pressure is maximum at about 4°C.) The resulting
multiple steady-state flows (which are numerically
obtained [ 1]) are then examined for their stability. The
conventional method of analysis of hydrodynamic
stability is not invoked, but a linearized stability
analysis of the steady states, considering only amplifi-
cation or decay with time, is made.

The different approach adopted in this study is to
derive the linear stability equations from a purely
mathematical standpoint and to examine the stability
of the steady state solutions in the same spirit, i.e.
by following as closely as possible the classical
analysis which studies stability of solutions of
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FiG. 1. Qualitative sketch of water density vs temperature:
(a) R < 0 upflow; (b) R > 1 downflow; (c) R ~ 0.5 downflow;
(d) R = 0 upflow.

0F(n,7)/0t = LF(n,t) by introducing F(n,1)=
f(n)exp(it) (where L is a linear operator in #). It is
the final transformed equations whose mathematical
stability is studied, instead of the original equations
of rates of change of momentum and energy. However,
as demonstrated in the Appendix, the results obtained
can be interpreted to be the asymptotic limit of the
traditional hydrodynamic case when the pertur-
bations allowed are real valued (the zero frequency
limit) and the wave number goes to zero as well. The
principal disadvantage of the approach used here is
that less information is obtained about the physics of
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NOMENCLATURE
a complex number used as exponent z independent variable on the unit
in the perturbations considered in interval, equation {14).
the Appendix, equations (A5}
A(z) ancillary function on the unit Greek symbols
interval, equation (27) o coefficient in the density relation,
B(z) ancillary function on the unit equation (2)
interval, equation (27) oy thermal diffusivity, equation (6)
c constant, equations (18) and (21) B complex number used as
¢, constant, equation (10) exponent in the perturbations in
c* constant, equation (21) Appendix, equation {(A5)
C, specific heat B complex number, equation (A7)
D(z) ancillary function on the unit o small number close to zero,
interval, equation (27) Section 3
E(z) ancillary steady-state temperature g small value for linearizing
gradient on the unit interval, n similarity variable, equation (9)
equation (14) A eigenvalue
f(n,t)  similarity streamfunction u viscosity of the fluid
g acceleration due to gravity P density
H(z) ancillary steady-state o porosity of the medium
streamfunction on the unit interval, T dimensionless time
equation {14) ¢{n,7}  nondimensionalised temperature
k thermal conductivity Yx,y, 1) streamfunction (u = d¢/dy,
K permeability of the median v = —0if/dx).
p(x,y,t) pressure
q exponent in the density relation, Subscripts
equation (2) e effective
R temperature ratio parameter, f of the fluid
equation (1) m at the extremum condition
Ra, local Rayleigh number, equation r reference value
(10) ] of the solid
t time 0 at the wall
T(x,y,t) temperature o0 at ambient condition.
ulx, y,z} Darcy velocity in the x direction
(= Oy /dy) Other symbols
v(x,y,t) Darcy velocity in the y direction - steady-state value
(= — Y /ox) " perturbations of the steady-state
V(x,y,t) velocity vector with components u - eigenvectors associated with the
and v particular form of perturbations
x coordinate along the vertical considered.
surface
y coordinate perpendicular to the
vertical surface

the disturbed flow than if the traditional approach
were successfully implemented, and information on
downstream, selective frequency growth of amplitude
is lost.

This approach is selected over the conventional
one because of the following considerations. As dem-
onstrated in the Appendix, the traditional approach
of studying hydrodynamic stability leads to a singular-
ity in the stability equations if a nonlinear variation of
density with temperature (of the specific mathematical
form indicated in Section 2) is assumed. However, the

presence of this singularity is not very serious since
it can be avoided by making additional assumptions
(see the Appendix). But the resulting system of equa-
tions is still quite complicated, and even after suitable
similarity transformations contains the x (vertical)
coordinate in the coefficients in a nontrivial way.
Further, the system is of sixth order. Since we are
investigating two entire families of multiple steady-
state solutions to indicate which of them are stable,
and not just the stability curves corresponding to a
single steady-state solution (for example, as is done
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F1G. 2. Coordinate system: (a) upflow (R near 0); (b) down-
flow (R near 0.5).

in refs. [2, 3] for systems in nonporous environments),
implementation of the classical approach would
require a major computational effort.

The approach adopted yields a simpler system of
equations which leads to a determination of the
relative stability of the various steady-state solutions,
and significant results are obtained with a saving of
much effort. The linear system of equations obtained
are of third order and have a less complicated x
dependence in the coefficients as compared to the x
dependence in the equations that result from the
classical formulation. Moreover, the boundary value
problem for the stability equations in this study is
also transformed from a problem on a semi-infinite
interval to one of the unit interval. This saves comput-
ational resources; and, more importantly, enables the
computation of eigenvalues and eigenvectors which
could not be found through computations on the
original semi-infinite interval.

Two families of steady-state solutions, one for R
near and greater than 0, and the second for R near
and less than 0.5 (where R is a temperature ratio
parameter, see Nomenclature) are computed. For
values of R between these two ranges no steady-state
solutions (as reported by Gebhart et al. [1]) have
been found. The second family (R near 0.5) has two
steady-state solutions at each value of R and the
corresponding bifurcation diagram has only one nose
(point of vertical tangency, see Figs. 3 and 4). For this
family only one eigenvalue A was found. It changes
sign at the nose, indicating that only one of the two
steady-state solutions at each R may be stable with
respect to time while the other certainty is unstable.
For the first family of solutions (near R = 0, see Figs.
3-5), the bifurcation diagram for the steady states has
many noses, three of which have been numerically
obtained, and many more are conjectured [1,4,5].
Many eigenvalues have been computed, all of which
are negative for the range of R over which a single
solution exists, and for the continuation of this range
to the first nose of the bifurcation diagram. Also the
ith eigenvalue (i = 1, 2) changes sign from negative to
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F1G. 3. Bifurcation diagram of the steady state in terms of
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F1G. 4. Bifurcation diagram of the steady state in terms of
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positive at the ith nose of the bifurcation diagram
and then remains positive. The third and the further
eigenvalues could not be numerically continued past
the first nose (because of difficulties described in
Section 3). Thus the flows corresponding to solutions
in the single-solution range of R continued to the first
nose may be stable, and the flows corresponding to
other steady-state solutions in the multiple-solution
range of R are only conditionally stable, becoming
more unstable as we continue down the bifurcation
curve.

The results of the stability analysis establish that
all heat transfer coefficients but one are unstable at
each R, and thus preclude any possibility of harnessing
in technology the multiple heat rates that are numeri-
cally predicted. For analogous results, see refs. [6, 7].

Similar bifurcation has been observed for the same
flow configuration in a nonporous environment [8].
(See refs. [6-8] for a comprehensive list of related
experimental and theoretical studies.) A conventional
stability analysis for this case has been performed by
Hwang [7], and neutral stability curves have been
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obtained. By implementing the present analysis to the
same problem [6], results that are qualitatively similar
to those in ref. [7] are observed. Thus the present
method (which is simpler and requires less comput-
ational effort than the traditional method, and yields
qualitatively similar conclusions) is relatively superior
and can be introduced as a general stability theory
in heat and mass transfer for problems that exhibit
bifurcation in the steady state, and where the bifur-
cation curve contains at least one point of vertical
tangency. Examples of such can be found in refs. [1,
4-9].

2. MATHEMATICAL FORMULATION

The vertical, isothermal surface is assumed at
constant temperature T, and is adjacent to quiescent
cold water saturating a porous medium at an ambient
temperature of T, . This temperature range is assumed
to be close to temperature T, (~4°C) at which the
density extremum occurs, see Fig. 1. The parameter
that characterizes the temperatures in the system, and
their relative positions and magnitudes is R which is
defined as [1,10]

R= (Tm - Tw)/(TO - Tm)’ (1)

A buoyancy force reversal arises for 0 < R < 1/2[1]
which lies in the inner portion of the thermal region
(close to surface) for R somewhat less than 1/2, and
in the outer portion for R close to 0. From Fig. 2 it
may be observed that the flow is upward for R <0
and downward for R > 1/2.

When fluid flows slowly through permeable
material, motion is resisted according to Darcy's law
[11-14], which states that the hydraulic gradient is
proportional to the fluid velocity and to its viscosity,
and is inversely proportional to the permeability. In
the equations of motion for creeping flow, the Darcy
resistance term replaces the Navier—Stokes viscosity
term. Using the Boussinesq approximation and the
density relationship for cold water [15]:

Pr = Pl 1 — 2| T — T[] @

the equations governing the velocity and temperature
fields are [12-14]:

V V= 0 (33)
PV By T
s TRy = VPt pmll —alT— T8 ()
oT )
(PColecg, + (PC)V VT =k, VT (3¢)
where [13]
(pCp)e = (1 — a)pCy); + alpCy)y,
k. = (1 — o)k, + ok;. @

It is assumed that in equations (3), V and T are the
only variables and the other coefficients are constant.

Hence a subscript r has been added to denote constant
reference quantities.

The hypotheses that were made to arrive at above
equations are [10]: the saturating liquid and the
porous medium are in local thermodynamic equilib-
rium; the physical properties of the fluid and the
medium are isotropic and homogeneous; and the
empirical Darcy’s law is valid.

The appropriate boundary conditions for the two-
dimensional system under study are

V(x,0,t) = V(x, 00,1t) = T(x,0,t) — T,
= T(x, 00,t) — T,
=0. (5)

The equations governing steady-state, natural con-
vection can be extracted from equations (3) by deleting
the time derivative. Defining

oy = ker/(pcp)fr’ (6)

and following the analysis presented in ref. [10], the
pressure terms in equation (3b) are eliminated through
cross differentiation. The boundary-layer approxi-
mations are then applied, which result in neglecting
the change in & with respect to x, as compared to @
with respect to y. Conduction in the direction of the
flow is also neglected. Integrating the resulting velocity
equation and applying the boundary condition at o
[equation (5)] results in [10]

_ K - ,
(x,y) = iu—g 3Puuel|T — Tul! — 1T, — Tol*] (7a)

_oT _oT T
ua-i-va—y—ocla—yz (7b)

where 0 < y < 00, 0 < x < o0, and
i(x,0) = (x,0) = ii(x, 0) = Kx,0) =0 (8a)
T(x,0) — Ty = T(x,0) — T, = 0. (8b)

The plus sign in equation (7a) corresponds to the
coordinate system in Fig. 2a and the minus sign to
that in Fig. 2b.

A similarity variable is defined as [10]

Y 12
=-—(R 9
n=; Raj ®
where Ra, is the local Rayleigh number and is defined

as

Ra, = cix,
et = 2Kap gl Ty — Too |/ (pety)- (10)

A normalised, steady-state temperature () and a
similarity, steady-state streamfunction f(r) are defined
as [1,10]

6(’1) = [T(x’ J’) - Tao]/(’lz) - Too)9

Ty = Pix, y)/[ay(Ra) 2], (11

From equations (9)-(11), and the definition of the
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streamfunction ¥ (see Nomenclature), the steady-state
equations (7) become (for 0 < < o)

df = q __ q
G = 006 — R~ R
d’¢ d¢
W +fg’; =0. 12)

The plus/minus signs correspond to Figs. 2a/2b,
respectively. The corresponding boundary conditions
are

J0) = $(0) — 1 = () = 0.

It has been shown [1] that ¢5(y) is strictly decreasing
for n > 0 and can be taken as an independent variable.
Thus letting [1]

(13)

z= ), E:)= —9?,
H(z) = f(n) (14
equations (12) become (for 0 <z < 1)
dH(z) _ _(z—R|"— IR}
dz E(z) ’
dEG) = H(z). (15)
dz

The minus/plus sign in equation (15) corresponds to
the coordinate system in Figs. 2a/2b, respectively. The
corresponding boundary conditions are

H(1) = E(0) = 0. (16)

The change in variables thus converts the auton-
omous, third-order, boundary-value problem on the
semi-infinite interval, given by equations (12) and
(13), to the nonautonomous, second-order, two-point
boundary-value problem on the unit interval, as given
by equations (15) and (16).

Following the analysis used to obtain equations
(7), the time-dependent equations (3b, ¢) are simplified
to obtain

Kpfr%
ou, Ot
- &l [T, Tl (17a)
(0C,)..dT oT oT T
v. el er_,v 2 1
(WCoe ot Tiax oy T Ugr U

The corresponding boundary conditions are expres-
sed by equation (5).
A scaled time is then defined as

T=ct

(18)

where ¢ is a constant to be determined for convenience.
Using the similarity variable n defined by equation
(9), a normalized temperature and similarity stream-
function [based on equation (11)] are introduced as

HMT 30:2-J
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_ T(x’y7t) - Tco
#(n,7) R T
_ ¥y
o) = R (19)

Using equations (9), (10), (18), (19), the following is
obtained from equations (17) (for 0 < < o0)

& .
33 3y = 09— RI—IRF,

00 _ 00 _0¢
&t o o

20)

As before, the plus/minus signs correspond to Figs.
2a/2b, respectively. Also, ¢ (chosen to non-
dimensionalize t) and c* are

Th,

PCpee 4 ou
c=—F, e¥="t_per_ _ ___Tx 21
Kpfr

(pcp)fr (alcf) (Kpfr) '
The boundary conditions are

J(0,7) = ¢(0,7) — 1 = ¢(c0,7) = 0.

(22)

Stability analysis

The nonlinear -dependent equations (20) are
linearized about the steady-state solutions f(n) and
@(n), whose stability is under consideration. This is
achieved by considering solutions of the form

fn,0) = f() + ef (0., 7) + O@E?),

$(n,7) = Bln) + edln, 7) + O?)

where f(1,7) and $(n, 7) are perturbations of / and ¢,
respectively, and ¢ is small and positive. Substituting
equations (23) into equations (20), and using equations
(12) to ‘cancel out’ the base flow (steady-state) terms,
a system of partial differential equations is obtained
(after dividing through by & and taking limits as ¢
tends to zero) in which the time derivative J/dt
appears in the equations governing f (as it should),
but in the equation for ¢ it appears as part of §2/d5dr.
Thus the system is not of the usual form, dV/ét = L,V
(L, is a linear operator), for a linear stability analysis
to be rigorously carried out. However, the following
analysis proceeds as if the system were susceptible to
the usual linear stability analysis.

The perturbations f and ¢ are assumed to be of
the form

Jo vy =e"Fm),  $n, 1) =e*dln).

Substituting equations (23) and (24) into equations
(20), cancelling out the steady state [equations (12)],
and taking the limit as ¢ goes to zero yields (for 0
<7< )

(23a)
(23b)

(24)

i

[+ 1]3—" — +qsign(@ — RIF — RI* 1. (252)

C*xi$—[f%+fg]_d_2§

e (25b)
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Again, the plus/minus signs correspond to Figs. 2a/2b,
respectively. The corresponding boundary conditions
are

J(0) = $(0) = $(c0) = 0.

Equations (25) and (26) form an eigenvalue problem
if we assign particular numerical value to x.

A transformation of equations (25) and (26) to a
unit interval is achieved by using z [defined by
equation (14)] as an independent variable and by
defining

(26)

AD =70,  B@) = n)

_ddtm)
dy

D(z) = V1))

Using equations (14) and (27), equations {25) yield
ffor0<z<1)

dA(z)  Fgsign(z — R)jz—R}*!

dz (4 + DE@) B@) (28a)
dB(z) _ D)
dz  E(@@ (28b)
@) _ . BE) D(z)
5 = c*xA B2 + H(z) EG) + A(z). (28¢)

The boundary conditions are obtained from equations
(27) and (14) as

A(1) = B(0) = B(1) = 0. (29

The minus/plus signs in equation (28a) correspond to
the coordinate systems in Figs. 2a/2b, respectively.

The change in variable enables the eigenvalue
problem on the semi-infinite interval [equations (25)}
to be converted to that on a unit interval. Of course,
a specific numerical value must be assigned to x for
the problem to be well-posed.

3. NUMERICAL RESULTS AND DISCUSSION

Equations (25) and (26) are solved by choosing 4
as an additional unknown and by appending the
trivial differential equation

di
an = 0. (30

An additional normalizing boundary condition is
specified as

J(o) =1,

dg) _
dy

for R near and >0 (31a)

1, for R near and <0.5. (31b)
The eigenvalue problem thus obtained is solved on a
finite interval [0,#,] with the boundary condition at
oo imposed at #,,. The same fixed value of n,, was
not used at every R, but instead n,, was so chosen
that both the steady-state solutions as well as the
eigenvectors converged smoothly and exponentially

S. KuMaRr and N. D, KAZARINOFF

to their respective conditions at co. It is observed that
if 5, is chosen to be much greater than the smallest
such value, the eigenvectors exhibit some numerical
instability manifested by slow decay and random
small oscillations of their components at large .

For the corresponding problem on the unit interval,
given by equations (28) and (29), the ecigenvalue
problem is solved by appending equation (30} (with
the derivative taken with respect to z), and considering
boundary conditions [from equations (31) and {27)]
of the form

AQ0) = 1,
D)= —~1,

for R near and >0 (32a)

for Rnearand <0.5. (32b)

In the range of R near to and less than 0.5, the
family of steady-state solutions and the corresponding
eigenvalues and eigenvectors are computed for the
interval [0,5,]. The values of 7., required were not
large (no greater than 52). However, for R near to
and greater than O very large values of 7, are required
(typically 100 and greater)} for the components of the
solution to smoothly and exponentially reach their
respective values at o, especially for small values of
J(c0). Thus equations (28) and (29) are used, which
are equations for the unit interval. The problem of
selecting a suitable 7, is then avoided and so are the
errors involved in integrating over large intervals.
Also by solving the problem on a unit interval enables
the computation of eigenvalues and corresponding
eigenvectors which would not have been found
through computations on the original system.

Even so, it was observed that integrating near zero
was quite difficult and equations (28) and (29) had to
be solved on an interval {1,5], where 6 — 0 and the
boundary conditions at é are obtained from equations
(28) and (29), and (32) by Taylor series expansion
about 0. These boundary conditions are expressed as

- LS.
A =1 - aa s>
__HO
BO)= ~ 425 (33)

for R near and greater than 0. An integration from 0
to 1 {(instead of from 1 to 0), by using the Taylor series
expansion about 0 to obtain good guesses for the
solution components near 0, could not be
implemented because the coefficients in the Taylor
series contain the value of A [see equation (33)] which
is unknown (and usually very small), thus making the
coeflicients of the Taylor expansion too sensitive to
the guess of A to be used.

Two different computer codes were used to obtain
the numerical results: BOUNDS and COLSYS.
BOUNDS is a two-point, boundary-value-problem
solving routine that uses multiple shooting techniques
[16-18], while COLSYS uses the method of collo-
cation with B-splines [19]. The steady-state solution
was first obtained by solving equations {12} and
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(13) with BOUNDS. Since the solution provided by
BOUNDS consists only of component values at a set
of pre-determined mesh points, the solution was given
to COLSYS to generate splines corresponding to
components of the steady-state solution vector. These
were then used by BOUNDS while solving the
stability equations [equations (25) and (26)]. A similar
approach was used while solving on the unit interval
[equations (15) and (16), and (28) and (29), respec-
tively]. The computations were performed on a CDC
Cyber 174/730 computer system, and both BOUNDS
and COLSYS were compiled by the FORTRAN 5
(FORTRAN 77) compiler under OPT = 2. Approxi-
mate run time for obtaining the steady-state solutions
ranged from a few CPU seconds to about 30s (for
large n,,), and for solving the linear stability equations
for the CPU time was about 50s for the range of R
near 0, and about 150s for the range of R near 0.5.
The computations were carried out to an error less
than 1075,

Before presenting the results we clarify what is
meant by stable. By the statement that a steady state
is stable we mean that small perturbations of the form
specified by equation (24) decay exponentially to O as
t — + oo for each fixed (x, y). Similarly, unstable means
that the absolute value of the perturbations grows
exponentially to oo as t — + oo for almost all fixed
(x, ).

All computations were carried out for ¢ = 1.8948186,
which corresponds to that for pure water at atmosph-
eric pressure, see [15]. For the first family of solutions
(R near 0, see Figs. 3-5 for bifurcation curves of the
steady-state solution) nine eigenvalues and corre-
sponding eigenvectors were found, see Tables 1 and
2 and Figs. 6 and 7. All the eigenvalues are negative
in the single solution range continued to the first nose
(point of vertical tangency) N, of the bifurcation
diagram. The first eigenvalue changes sign from
negative to positive at the first nose and remains
positive thereafter. Similarly the second eigenvalue
changes algebraic sign and becomes positive at the
second nose N,.

The third and further eigenvalues could not be
computed past the first nose due to difficulties that
were encountered. While numerically continuing the
third and further eigenvalues and the corresponding
eigenvectors past the first nose N, the computations
would converge to the first and second eigenvalues
and their corresponding eigenvectors (especially the
second), rather than yielding the corresponding third
and further eigenvalues and eigenvectors. All the
eigenvalues A; are small negative numbers before and
after the first nose N, (except 4; which becomes
positive after the nose, but is small in magnitude); see
Tables 1 and 2, and Figs. 6 and 7. The eigenvectors
corresponding to different 4; become almost identical
as the first nose N, is approached from the single-
solution range of R on the bifurcation diagram. We
conjecture that just before the first nose N, the values

357
0.358 T T
e >
= Schematic 1
-¢'t10)
0.356} 4
Ny ¢
0.3 1 1
0.1920 01925 0.930 01L35

R

FiG. 5. A blown-up version of the bifurcation diagram in
Fig. 3.

~0.02F-

-004f 2
-006}F %
Xl

-008—7

-0.10p~" 8

-o.le 4

-0.14]

\
W

o

®

1

0

1
005

1
0.0
R

0.5

0.20

FIG. 6. The multiple eigenvalues 4, for the family of solutions
near R =0.

-10

A2

1

0.1920

o]
0.925

R

0.1930

0.935

F1G. 7. A blown-up version of Fig. 6, showing the first two

eigenvalues past the first and second noses.



358 S. KUMAR and N.

D. KAZARINOFF

Table 1. The first two cigenvalues for the family of solutions near

R-=0

R f(0) 2 A, Moo
0.000000 0.794702 --0.17337 x 107! —0.21861 x 10~' 28
0.050000 0.696221 --0.13123 x 10" ' —0.16107 x 10°! 34
0.100000 0.579459 093674 x 1072 —0.12330 x 10! 34a}
0.125000 0.510158 —0.74365 x 10 2 —0.15318 x 10°!  34b
0.155000 0.408813 046009 x 1072 —0.61153 x 10”2 46¢
0.180000 0.287461 ~0.21409 x 102 —0.27418 x 10”2 70d
0.189296  0.210000 —0.10152 x 1072 —0.15234 x 1072 82
0.192446  0.160000 -0.44028 x 10 3 —0.98621 x 1073 88e
0.192813  0.150000 --0.34120 x 107* —0.85313 x 107 94
0.192655 0.050000  0.23579 x 1073 —0.10795 x 1073
0.192454  0.040000 024629 x 107* —0.67733 x 107* +f
0.192163  0.015000  0.24058 x 103 —027318 x 1075
0.1921593 0.011750 023839 x 107* —0.16631 x 107¢ ¥
0.192160  0.010000 023762 x 1073 097532 x 107 +
0.192164 0.007500  0.23640 x 10°* 022748 x 107° t g

+Computed on the unit interval.

+This point [R. j(x)] is identified on

the plots by this alphabet.

(All computations done at ¢*x = 10.)

Table 2. The single eigenvalue for the family of
solutions near R = 0.5

R —$10) 4 1.,
0.485000 0.308756 —0.23679 x 10! 28ht
0480000 0.301769 —0.23340 x 10 ' 28j
0475000 0.294583 —0.22994 x 107! 28j
0.465000 0.279528 —0.22259 x 10°!' 28k
0.425000 0.204477 —0.15482 x 107} 341
0407125 0.150000 —0.74774 x 10 * 34m
0.400825 0.100000 —0.19839 x 10" * 40
0.400820  0.098000 0.63129 x 0™+ 40
0.404360  0.065000 043707 x 107* 40
0.405613  0.060000 049576 x 10 * 40
0.407107  0.055000 0.55221 x 0%  40n
0.420000 0.0292305 0.78838 x 107 40
0.440000 0.01075t6 0.82761 x 1072 40
0.460000 0.0025985 0.68274 x 107 46
0.465000 0.0015545 062415 x 10 2 S2o
0.475000 0.0003492 048036 x 107*  52p
0.480000 0.0001018 039475 x 1072 52
0.485000 0.0000132 0.30064 x 10 ¢ 52

t This point [R, ¢'(0})] is identified on the graph
by this alphabet. (All computations done at ¢*x — 10.)

of 45, A4, ... are closer to the values of 4, and 4, just
after this nose. Thus our numerical computations
jump from 4, 4,4, ... to the values of A, and %, as
one passes beyond N,. To avoid this, guesses based
on the values before the nose N, and the expected
values after N, were used in an endeavour to compute
A3, A, ... after the nose. But this did not succeed since
convergence could not be reached in a reasonable
amount of computer run time.

By observing that all the eigenvalues are negative
in the single-solution range continued to the first nose
N,. we conclude that these steady-state solutions may
be stable up to N,. The other multiple solutions,
existing past the first nose N, on the bifurcation
diagram, have some eigenvalues associated with them
that are positive and are thus unstable steady-state
solutions. In terms of heat transfer coeflicient at the
wall [heat transfer at wall is proportional to — @0)].
the result implies that of all multiple solutions at any

R in the first family of solutions (near R = 0), only
the one with the highest heat transfer coefficient at
the wall may be stable, while others with lower
heat transfer coefficients are unstable with time. The
existence of multiple eigenvalues also lends support
to the conjecture that there exist infinitely many noses
in the bifurcation diagram and that corresponding to
the ith nose N, is an eigenvalue 4; that changes sign
(exactly once) from negative to positive at N; as f(co)
decreases.

For the second family of solutions (R near 0.5, see
Figs. 3 and 4 for the bifurcation diagram) only one
eigenvalue 1 was found (Table 3). It changes sign at
the nose N of the bifurcation curve indicating that
only one of the steady-state solutions at each R may
be stable, the one with the higher heat transfer
coefficient at the wall. We conjecture (from Fig. 8)
that the singie cigenvalue A for this second family of
solutions decreases to 0 as ~— ¢'(0) decreases to 0 and
R approaches 0.5 as well on the bifurcation curve.

The above eigenvalues were found to be reasonably
insensitive to changes in c*x (see Table 4). We remark
that it is no accident that the eigenvalues, considered
as functions of [ f(o0), R] or [ — ¢'(0), R], change their
signs independently of the value of x (x > 0). This is
so because for ¢*x > 0 the condition c¢*xA = 0 implies,
for example, that A[ f(c0), R] = 0, and vice versa.

Thus our results establish that only one of the
multiple steady states previously found may be stable
with time, and one may expect to observe the corres-
ponding flows experimentally. All the rest of the
steady states are not stable with time, and thus one
may not expect to observe any of the corresponding
flows experimentally.
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APPENDIX: TRADITIONAL FORMULATION FOR
HYDRODYNAMIC STABILITY

The conventional method of studying hydrodynamic stab-
ility of the system under consideration is outlined in this
Appendix. It is shown that such a formulation {based on the
analysis presented in refs. [ 2, 3]} leads to a singular coefficient
in the governing equations. It is also demonstrated that the
singularity can be eliminated by assuming the x derivatives
of the time-dependent velocities to be small as compared to
the y derivatives; and that the stability equations used in
the previous sections may be extracted from the resulting
equations.

First, the pressure terms are eliminated from the time
dependent equations (3) by cross differentiation. After ‘lum-
ping’ the constants together with the help of equations (10}
and (21), the resulting equations are linearized about the
steady-state solutions i(x, y), ¥x, y) and T{(x, y) by considering
solutions of the form

ulx, y, 1} = i(x, y) + e, y, 1) + O(c?) (Ala)
o(x, y,1) = #(x, y} + e8(x, , 1) + O(&%) {Alb)
T(x, ¥, 8 = T(x,y) + eT(x, y.1) + O@?) {Alg)

where ¢ is small and positive. Neglecting the change in &, §
and T with respect to x, as compared to those with respect
to y, dividing through by ¢ and taking limits as ¢ + 0, and
cancelling out the steady-state terms with the help of
equations (7), the resulting equations yield

1ofon_os] fon o0
cot| oy Ox dy Ox

2 sign(T —

= . - g1
*q9-5 T, — T ay[IT T T (A2a)
@CE},,§+ T aa_r ,aT ﬁgs__""t_‘
(pCp. Ot 6x 0x dy
’*T 1T
‘[5}‘”5?]‘ {(A2b)

The plus/minus sign corresponds the coordinate system in
Figs. 2a/2b, respectively.

The final form of the equations after substituting the
mathematical forms of perturbations 4, § and 7T is not
presented here since the object is to demonstrate that a
singularity is introduced in the coefficients of the linear
stability equation and that it can be removed. The singularity
exists on the RHS of equation (A2a) since 1 < g <2, ie.

\T — T,|"" 2 (obtained after simplifying 3/y) is singular at
T=1T,.

This singular behaviour may be eliminated only if, in
addition to neglecting the change in steady-state physical
quantities with respect to x as compared to changes with
respect to y, we also assume that the change in the time-
dependent velocity perturbations i and 6 with respect to x
can be neglected as compared to those with respect to y (as
done in Section 2). Then equation (A2a) may be integrated
to yield [after using the boundary condition at y = o,
equation (5}]

o clsign(T — T)

ca TSR O T~ T (A3
0 fw

‘We define (see discussions in refs. [2,3])

Yix, 3,0 = §(x, y) + ed(x, 3, 1) + O {(A4)
Plx,3,1) = ay(Ra,) P (pete—#9 (Asa)
Tix,y,8) = (T, — T)@lme e (ASb)

where # is the similarity variable defined by equation (9).
Here Re(a) is the wave number in the x direction (=2
divided by wavelength), and Re(f) is the angular frequency
{=2n multiplied by frequency). (Note that g and B are
complex numbers independent of x.) If Im{x) < O the wave
will amplify with increasing x, while if Im{f) > 0 the wave
will amplify with time. For the case Im(x) = Im(B) = 0, the
wave will be neutrally stable and will neither amplify nor
decay.

From equations (11), (A4), (AS) and using the derivatives
of the perturbation stream function ¥ to represent 4 and §,
equations (A3) and (A2b) are transformed to (for 0 < n € )

—ipr Y0 dfi (ﬂ) df()
dr7 dn
= tqsign[$n) — R]I$(m) — R ')  (A6a)
— i xn) ~ [}'(u} 00 , 711 )da‘”’]
. an[ oy T df(rr) T )dam)]
_ &P 1 dz&('l) dén)
“Tap T Rax[ ’ ar T an
—4a®x2 () — idaxn dim)j]. (A6b)
n
where equation (21) defines ¢* and
B* = ple. (A7)

The boundary conditions are given by equations (26).
Equations {A6) and (26) form the stability-eigenvalue prob-
lem.

We make the following remarks.

1. If the change in T with respect to x is neglected when
compared to the changes with respect to y (the large Ra,
case), the RHS of equation (A6a) becomes
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d2d(n)

o (A8)

2. If a=0 and B =ilm(B) (ie. —ifi* = A, A real) then the

system of equations (A6b) and (A8) reduces to the system
(25) and (26) studied in Section 2.

. The system (A6) is equivalent to a sixth-order system of
differential equations with real-valued dependent vari-
ables. The system of linear stability equations studied in

dependence of the coefficients in equations {A6) is more
complicated than the x dependence in the system {25) and
(26) in Section 2.

. The singularity which occurs in deriving the classical

linear stability equations can be avoided by not eliminat-
ing the pressure terms [6]. This approach was not adopted
because it introduces additional pressure variables and
adds to the complexity of the mathematical system of

Section 2 is order three, which results in a significant equations, reducing the efficiency of computations.

simplification in the numerical analysis. Further, the x

STABILITE DE LA CONVECTION NATURELLE AVEC EXTREMUM DE DENSITE
DANS UN MILIEU POREUX

Résumé—On étudie la stabilité relative d’états multiples de convection libre laminaire dans un milieu
poreux saturé avec ’eau pure froide, le long d’une surface plane, verticale et isotherme. On trouve dans la
bibliographie deux régions distinctes de solutions numériques d'états d’équilibre muitiples pour des con-
ditions d’¢coulements dans lesquels le domaine de température couvre un maximum de densité
(0 < R< 1/2, ou R est un paramétre de rapport de température). L'analyse de stabilité de ces états
d’équilibre est conduite en linéarisant les équations dépendant du temps autour des solutions d'état
permanent et en considérant seulement 'amplification ou l'amortissement des perturbations dans le temps.
Les resultats obtenus montrent que tous les états multiples d’équilibre, sauf un, & chaque R sont instables
vis-a-vis du temps. On discute I'approche utilisée dans cette étude par rapport a P’analyse de stabilité
hydrodynamique conventionnelle.

STABILITAT EINER FREIEN KONVEKTIONSSTROMUNG IN DER UMGEBUNG
EINES DICHTE-EXTREMUMS IN EINEM POROSEN MEDIUM

Zusammenfassung-—Es wurde die relative Stabilitdt der verschiedenen stationdren Zustdnde von laminaren
freien Konvektionsstromungen entlang einer vertikalen isothermen und ebenen Oberfliche in einem
pordsen mit kaltem, reinem Wasser gesattigten Medium untersucht. Von zwei unterschiedlichen Bereichen
numerisch berechneter Ldsungen mit verschiedenen stationdren Zustidnden fiir die Stromungsbedingungen,
bei welchen der Temperaturbereich ein Dichte-Extremum (0 < R < 1/2 mit R als Temperaturverhaltnis)
beinhaltet, wird in der Literatur berichtet. Die Stabilitat dieser stationdren Zustinde wurde durch Li-
nearisierung der zeitabhidngigen Gleichungen um die stationdren Ldsungen und die alleinige Betrachtung
von Verstarkung oder Abschwichung der Storungen iber die Zeit untersucht. Die so ermittelten Ergeb-
nisse zeigen, daB alle (bis auf einen) verschiedenen stationdren Zustinde bei jedem R im Hinblick auf
die Zeit instabil sind. Jeweilige Vorziige und Méangel des Niherungsverfahrens in dieser Untersuchung
gegeniiber der konventionellen hydrodynamischen Stabilitdtsanalyse wurden erortert.

YCTOVYUBOCTH CBOBOAHOKOHBEKTHBHOI'O TEUEHMSA B [TOPUCTOW CPEJIE I1PU
HAJIMYHMHU DKCTPEMYMA IJNIOTHOCTU

Ansoraums—HccenenyeTcs OTHOCHTENIbHAA YCTOMYHBOCTh MHOXECTBA CTALMOHAPHBIX COCTORHHM JIaMH-~
HApPHBIX CBOOOJHOKOHBEKTHBHBIX NOTOKOB B NMOPHCTOM MATEPHAJE, HACHIIEHHOM XOJIOAHON HMCTOMH
BOJOMH, BONL BEPTHKAILHOH, M30TepMHYecKol IUockod mosepxHocTH. B omybnmkoBanHbIX paGorax
OTMEYaJIOCh HAJINYHE NBYX OTHET/IMBBIX OONAcCTell B YHCIIEHHBIX CTANHOHAPHBIX PEILCHHAX IS TAKHX
YCJIOBHH Te4eHHs, NPH KOTOPHIX BHYTPEHHHH IHANa3oH TEMIEPAaTyp BKIIOYAET MAKCHMYM MJIOTHOCTH
(0 < R < 1/2, rae R—napaMeTp, YYHTHIBAIOIMHA OTHOWeHHe Temuepatyp). IlpoBenen ananm3 ycroiiuu-
BOCTHM CTAlIMOHAPHBIX COCTOAHMI HHeapH3auneil HECTAUHOHAPHBIX YCIOBHH OTHOCHTENIBHO CTallHOHAP-
HbIX pellieHHll H paccMaTpHBas TONBLKO YCHJIEHME MIH ocnablieHHEe BO3MYIIEHHE BO BPEMEHH.
MonyyeHHble pe3ysibTaThi NOKA3BIBAKOT, YTO 332 HCKITOYCHHEM OJIHOTO BCE CTAHHOHAPHBIC COCTOSHMSA
AR KAXAOTC 3HA4eHHS R S#BASIOTCA HEYCTOHYHBBIMM BO BPeMEHH. PacCMOTPCHBI NIPEeHMYIHIECTBA H
HEAOCTATKH HCHOJL3YEMOTO METO/Ia MO CPaBHEHY 0 ¢ OOBIYHEIM aHANN30M I'HADOAMHAMENECKOH yCTOMR-
YHUBOCTH.



